요즘 인터넷에서 단백질을 접는 게임 fold.it이 아주 인기입니다.
단백질 접기(protein folding)는 구조생물정보학의 가장 큰 문제이기도 하지만, 제가 있는 연구실의
주요 주제이기도 해서, 단백질 접기에 관한 몇 가지 얘기를 해 볼까 합니다. 🙂
단백질 구조가 뭔가?
단백질은 생물을 구성하는 주요 분자구조 중의 하나인데, 20가지 아미노산이 일렬로
실처럼 쭉 연결되는 것이 기본 구조입니다. (현재 22번째 자연계 아미노산까지 발견되긴
했지만 사람은 20개만 사용하고 있습니다.) 20가지면 컴쟁이가 생각하기에 바로 생각할
수 있는게 알파벳으로 커버하고 남는다 그거죠. 그래서 실제로 아미노산은 알파벳으로
표시하고 있는데 각각의 이름을 따서 BJOUXZ 여섯개를 빼고 나머지로 표현하는 문자열로
많이 씁니다.
그런데, 각 아미노산은 성질이 있어서 자기들끼리 모이려고 하는 것도 있고, 서로 떨어지려고
하는 것도 있고 크기가 커서 부딪히지 않으려고 하는 것도 있고, 기타 등등 여러 성질이 있어서
안정적인 몇 가지 기본적인 구조(나선형, 판형 등..)을 지역적으로 이루는데, 이걸 2차구조라고 부릅니다.
역시 인간관계도 상당히 복잡하듯, 2차구조를 이룬 다음에도 자기들끼리 꼬이면 그나마 남은
관계까지도 복잡하게 얽여서 굉장히 안정적인 구조를 만들 수 있는데요, 이렇게 모인 것을
3차구조라고 부릅니다. 그리고 여러 단백질 가닥이 모여서 큰 단백질을 만들면 4차구조라고
부릅니다.
구조는 뭐에 쓰는가?
단백질은 생화학적 작용의 가장 기본적이고 유용한 분자이기 때문에, 생화학 작용에서
단백질을 빼면 거의 남는게 없습니다. 물론 핵산이나 탄수화물 등도 매우 중요하긴 하지만,
생화학 회로를 그린다 하면 거의 대부분 단백질이 주인공이죠. 그런데, 단백질이 상대를
만나서 반응을 하는 기준이 대부분 단백질에 있는 구멍의 특정 모양이나 아미노산들이 배치된
패턴과 상대의 특징들 같이 단백질과 생분자간의 모든 관계가 구조를 빼면 설명하기 힘듭니다.
그래서 단백질의 구조를 밝히는 것이 분자생물학, 세포생물학의 기본 원리를 밝히는 데 뿐만
아니라, 새로운 단백질을 디자인하고 약을 만드는 데 매우 중요한 도구입니다. 90년대 말의
히트작 항암제인 글리벡도 구조를 연구해서 기막히게 구멍을 메우는 약이죠.
구조를 그냥 보면 안 되나?
웬만하면 구조는 그냥 현미경으로 보면 가장 좋겠죠. 그런데, 단백질은 빛의 파장보다
짧은 구조를 하고 있기 때문에, 가시광선으로는 볼 수 없어서 현미경으로 볼 수 없고,
전자현미경이나 다른 원리를 쓰는 현미경들도 (적어도 아직은) 단백질 구조까지 보기에는
한참 힘듭니다. 그래서 사용하는 것이 일반인들에게 MRI로 유명한 NMR과
X레이 구조결정 두 가지 방법이 쓰이는데요, 보통 X레이가 여러 이유로 더 많이 쓰입니다.
X레이로 그냥 다 찍으면 보이면 좋은데, 이게 결정을 만들어야하다보니, 같은 분자를 다량
정제하는 것도 힘들고 결정으로 만들기도 힘든 고분자를 결정으로 만드는 것도 상당히
경우에 따라 다른 기술이 필요합니다. 그래서, 대량으로 찍고 싶다고 다 나온다기 보다는
관심이 많은 단백질들의 구조에 집중되어 있는 편입니다. 또한, 단백질 구조가 항상 같은게
아니라 꿈틀꿈틀 움직이기도 하고 아예 훽훽 움직이기도 하는데 그 움직임이 중요한 경우도 있어서 원하는 걸 다 얻기도 힘들고,
막 사이에 끼여있는 단백질 같은 경우엔
아예 원래 구조로 결정으로 만드는게 너무너무너무 힘들어서 지금까지 찍힌 것이
손으로 꼽을 정도가 되기도 합니다.
계산적 구조 예측
그래서 하는 것이 컴퓨터를 이용한 구조 예측입니다. 기본적으로 원자의 움직임은 물리역학적
특성을 따르기 때문에, 움직임이나 안정적 구조를 컴퓨터로 당연히 이론적으로 예측할 수
있습니다. 대표적으로 사용되는 방법은 분자동역학 시뮬레이션이나 몬테카를로 같은 것들을
쓰는데, 전자의 경우에는 계산량이 엄청나게 많아서 수십나노초(ns)가 넘으면
예측이 거의 불가능해집니다. 그리고 몬테카를로법이나 다른 변종들도
한계가 있습니다. (시작점을 잡기 위한 방법이나 지속적인 움직임을 보기 위한 다른 방법을 도입할 필요가 있죠.)
그 결과 결국 구조 예측의 주축은, 유사성 모델링이 되었는데, 기존의 비슷한 단백질의 구조를 가져다가
여기 저기 비슷한 부분을 잘라 붙인 다음에, 그걸 기존 방법으로 에너지 안정화 시뮬레이션을
좀 거치는 방법입니다. 기존 단백질 구조를 이용해서 완전 바닥이 아니라 벌써 한참 진행된
것을 가지고 하기 때문에 아주 효율적이고 비교적 정확한 결과를 얻을 수 있지만, 기존의
비슷한 단백질이 없으면 구조를 예측하지 못하는 한계가 있습니다. 그렇지만, 데이터베이스가
점점 커져서, 최근에는 단백질 예측에서 유사성을 이용하지 않는 것은 상상할 수 없을 정도가
되었고 데이터베이스 크기가 예측의 품질과 매우 밀접한 관계를 가지게 되었습니다.
구조 예측 대회 CASP!
이렇게 단백질 구조 예측이란게 아주 정의가 잘 된 계산 문제가 되다보니, 그 다음에 당연히
나올 수 있는 것은 초밥만들기 대회처럼 세계대회가 생기는 것이겠죠. 그 중 가장 큰 것은
단연 CASP입니다. 1994년부터 격년으로 하고 있는데
올해 대회는 얼마 전에 참가접수가 끝나고, 지금 한참 대회가 진행 중입니다.
요즘 유행하는 fold.it도 이 구조 예측 대회를 타겟으로 나온 것인데, fold.it을 만든
워싱턴대학(시애틀) 생화학과의 David Baker 연구실은 한동안 CASP을 휩쓸었던
먼치킨 그룹입니다. 여기는 애플과 비슷한 점이 많은데, 남들이 다 뻔히 될 것 같다고 생각하고는
있지만 실제로는 여러 이유로 안 해보는 것들을 아주 기발하고 멋진 해결책을 들고서
짠! 하고 만들어서 그걸로 굉장한 결과물을 만들어냅니다. 유사성 모델링에서 에너지 계산방법도
그렇고, 구조 데이터베이스 탐색법, 분산계산(Rosetta@Home)등 여러 가지가 그런데요,
이번에 fold.it도 종종 컨퍼런스에서 구조는 역시 사람이 보고 끼워맞추는게 최고다 그런
농담이 자주 나오는 걸 진짜로 게임으로 만들어서 수만명이 달려들게 만들어버렸습니다.
-ㅇ-; 그 결과 지금 fold.it에 슬슬 CASP문제가 나오기 시작했고, 올해 CASP 문제를
게임에서 수만명 플레이어가 여러가지를 아직 알고리즘으로 나오지도 않은 여러 직관을
써서 풀어놓으면 거기서 나온 구조로 CASP 답안으로 제출한다고 합니다. 물론 컴퓨터로
찾는 것 보다 완전 샅샅히 뒤지는 것은 안 되겠지만, 그래도 사람의 직관이 수만명이
모이면 그 힘이 어떻게 될 지는 상상도 안 가네요. 아마도 상당히 상위권에 들어갈
수 있지 않을까 싶습니다.
실제로 게임 안에 나오는 구조는 진짜 단백질 구조인가?
많은 분들이 물어보셔서 덧붙이자면, 게임 안에서 쓰이는 용어는 모두 실제
생물학에서 사용하는 용어이고, 구조에 큰 영향을 주는 요소들은 상당 부분이
게임 안에서 자세히 표현되어 있습니다.
앞으로 이런 게임이 어떤 것이?
직관으로 풀면 훨씬 간단한 NP-hard 문제들을 재미있는 퍼즐로만 만들 수 있다면
이렇게 잘 표현한 게임으로 만드는게 수천개 CPU 동원한 클러스터보다 효율적일 수도
있을 것 같습니다. 단백질 구조 외에도 계통 분류 최적화나 RNA 구조,
단백질-단백질/라이간드 도킹 예측/디자인, 단백질 유도 진화 등 재미있는 게
많이 있을 것 같은데 게임으로 과연 만들 수 있을지는 모르겠네요. ㅎㅎ;
우와~~ 이해하기 어려울 수도 있는 이야기를 쉽고 재밌게 잘 설명하셨네요. ^ ^
저도 요즘에 fold.it 을 시작했습니다.. 항상 좋은 글 써주시는것 잘 보고 있고요..
분자동역학 시뮬레이션이 몇십 피코초를 넘어서면 부정확해지기 시작한다는데 대해서는 동의하기 어렵네요.. 부정확해지기 때문에 오래 돌리지 않는다기 보다는 리소스가 부족해서 안 돌리는것으로 알고 있는데요.. 레퍼런스가 있으신지요?
참.. 요즘에는 피코초까지만 돌리는 분자동역학 시뮬레이션은 못 본것 같습니다.. 보통 정확도가 높은 경우에도 10-20 나노초까지는 돌립니다.. 정확도를 떨어뜨린 경우에 (Coarse-grained 모델등을 사용한 경우..) 100 나노초이상부터 밀리세컨드까지 시뮬레이션을 합니다..
으악. 광우병 관련해서 제가 쓰고 있던 글인데 먼저 써버리시다뉫 ㅡㅜ
선환님: 제가 정확히 확인해 보지 않고 그냥 대충 쓰다보니 좀 문제가 있었네요. 지적해 주셔서 감사합니다. 해당 부분은 수정하겠습니다. 부정확과 관련된 이야기는 결과나 과정 중의 오류라기보다는 엉뚱한 로컬미니멈으로 빠지는 얘기를 하려고 했던 것인데 표현도 부정확하고 정확한 문제를 지적하지도 못했던 것 같군요. 🙂
yy님, terra19님: ^.^;;; =3=3